MEF2C protects bone marrow B-lymphoid progenitors during stress haematopoiesis
نویسندگان
چکیده
DNA double strand break (DSB) repair is critical for generation of B-cell receptors, which are pre-requisite for B-cell progenitor survival. However, the transcription factors that promote DSB repair in B cells are not known. Here we show that MEF2C enhances the expression of DNA repair and recombination factors in B-cell progenitors, promoting DSB repair, V(D)J recombination and cell survival. Although Mef2c-deficient mice maintain relatively intact peripheral B-lymphoid cellularity during homeostasis, they exhibit poor B-lymphoid recovery after sub-lethal irradiation and 5-fluorouracil injection. MEF2C binds active regulatory regions with high-chromatin accessibility in DNA repair and V(D)J genes in both mouse B-cell progenitors and human B lymphoblasts. Loss of Mef2c in pre-B cells reduces chromatin accessibility in multiple regulatory regions of the MEF2C-activated genes. MEF2C therefore protects B lymphopoiesis during stress by ensuring proper expression of genes that encode DNA repair and B-cell factors.
منابع مشابه
Expression of TCR-Vb peptides by murine bone marrow cells does not identify T-cell progenitors
Germline transcription has been described for both immunoglobulin and T-cell receptor (TCR) genes, raising questions of their functional significance during haematopoiesis. Previously, an immature murine T-cell line was shown to bind antibody to TCR-Vb8.2 in absence of anti-Cb antibody binding, and an equivalent cell subset was also identified in the mesenteric lymph node. Here, we investigate ...
متن کاملExpression of TCR-Vβ peptides by murine bone marrow cells does not identify T-cell progenitors
Germline transcription has been described for both immunoglobulin and T-cell receptor (TCR) genes, raising questions of their functional significance during haematopoiesis. Previously, an immature murine T-cell line was shown to bind antibody to TCR-Vβ8.2 in absence of anti-Cβ antibody binding, and an equivalent cell subset was also identified in the mesenteric lymph node. Here, we investigate ...
متن کاملIdentification of Novel Human NK Cell Progenitor Subsets
Understanding the pathways and regulation of human haematopoiesis, in particular, lymphopoiesis, is vital to manipulation of these processes for therapeutic purposes. However, although haematopoiesis has been extensively characterised in mice, translation of these findings to human biology remains rudimentary. Here, we describe the isolation of three progenitor subsets from human foetal bone ma...
متن کاملExpression of stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4, on CD34+ human bone marrow cells is a phenotypic alteration for committed lymphoid progenitors.
We found that the stromal cell-derived factor-1/pre-B cell growth-stimulating factor receptor, CXC chemokine receptor 4 (CXCR4), is expressed on human CD34+ bone marrow (BM) cells. Stringently FACS-sorted CD34+CXCR4+ BM cells completely lack myeloid, erythroid, megakaryocytic, and mixed colony-forming potential (myeloid progenitors), but give rise to B and T lymphoid progenitors, whereas CD34+C...
متن کاملSOX7-enforced expression promotes the expansion of adult blood progenitors and blocks B-cell development
During embryogenesis, the three SOXF transcription factors, SOX7, SOX17 and SOX18, regulate the specification of the cardiovascular system and are also involved in the development of haematopoiesis. The ectopic expression of SOX17 in both embryonic and adult blood cells enhances self-renewal. Likewise, the enforced expression of SOX7 during embryonic development promotes the proliferation of ea...
متن کامل